3.1549 \(\int (b+2 c x) (d+e x) \sqrt{a+b x+c x^2} \, dx\)

Optimal. Leaf size=122 \[ \frac{e \left (b^2-4 a c\right ) (b+2 c x) \sqrt{a+b x+c x^2}}{32 c^2}-\frac{e \left (b^2-4 a c\right )^2 \tanh ^{-1}\left (\frac{b+2 c x}{2 \sqrt{c} \sqrt{a+b x+c x^2}}\right )}{64 c^{5/2}}+\frac{\left (a+b x+c x^2\right )^{3/2} (-b e+8 c d+6 c e x)}{12 c} \]

[Out]

((b^2 - 4*a*c)*e*(b + 2*c*x)*Sqrt[a + b*x + c*x^2])/(32*c^2) + ((8*c*d - b*e + 6*c*e*x)*(a + b*x + c*x^2)^(3/2
))/(12*c) - ((b^2 - 4*a*c)^2*e*ArcTanh[(b + 2*c*x)/(2*Sqrt[c]*Sqrt[a + b*x + c*x^2])])/(64*c^(5/2))

________________________________________________________________________________________

Rubi [A]  time = 0.0904475, antiderivative size = 122, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 26, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.154, Rules used = {779, 612, 621, 206} \[ \frac{e \left (b^2-4 a c\right ) (b+2 c x) \sqrt{a+b x+c x^2}}{32 c^2}-\frac{e \left (b^2-4 a c\right )^2 \tanh ^{-1}\left (\frac{b+2 c x}{2 \sqrt{c} \sqrt{a+b x+c x^2}}\right )}{64 c^{5/2}}+\frac{\left (a+b x+c x^2\right )^{3/2} (-b e+8 c d+6 c e x)}{12 c} \]

Antiderivative was successfully verified.

[In]

Int[(b + 2*c*x)*(d + e*x)*Sqrt[a + b*x + c*x^2],x]

[Out]

((b^2 - 4*a*c)*e*(b + 2*c*x)*Sqrt[a + b*x + c*x^2])/(32*c^2) + ((8*c*d - b*e + 6*c*e*x)*(a + b*x + c*x^2)^(3/2
))/(12*c) - ((b^2 - 4*a*c)^2*e*ArcTanh[(b + 2*c*x)/(2*Sqrt[c]*Sqrt[a + b*x + c*x^2])])/(64*c^(5/2))

Rule 779

Int[((d_.) + (e_.)*(x_))*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> -Simp[((b
*e*g*(p + 2) - c*(e*f + d*g)*(2*p + 3) - 2*c*e*g*(p + 1)*x)*(a + b*x + c*x^2)^(p + 1))/(2*c^2*(p + 1)*(2*p + 3
)), x] + Dist[(b^2*e*g*(p + 2) - 2*a*c*e*g + c*(2*c*d*f - b*(e*f + d*g))*(2*p + 3))/(2*c^2*(2*p + 3)), Int[(a
+ b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && NeQ[b^2 - 4*a*c, 0] &&  !LeQ[p, -1]

Rule 612

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((b + 2*c*x)*(a + b*x + c*x^2)^p)/(2*c*(2*p +
1)), x] - Dist[(p*(b^2 - 4*a*c))/(2*c*(2*p + 1)), Int[(a + b*x + c*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c}, x]
 && NeQ[b^2 - 4*a*c, 0] && GtQ[p, 0] && IntegerQ[4*p]

Rule 621

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int (b+2 c x) (d+e x) \sqrt{a+b x+c x^2} \, dx &=\frac{(8 c d-b e+6 c e x) \left (a+b x+c x^2\right )^{3/2}}{12 c}+\frac{\left (\left (b^2-4 a c\right ) e\right ) \int \sqrt{a+b x+c x^2} \, dx}{8 c}\\ &=\frac{\left (b^2-4 a c\right ) e (b+2 c x) \sqrt{a+b x+c x^2}}{32 c^2}+\frac{(8 c d-b e+6 c e x) \left (a+b x+c x^2\right )^{3/2}}{12 c}-\frac{\left (\left (b^2-4 a c\right )^2 e\right ) \int \frac{1}{\sqrt{a+b x+c x^2}} \, dx}{64 c^2}\\ &=\frac{\left (b^2-4 a c\right ) e (b+2 c x) \sqrt{a+b x+c x^2}}{32 c^2}+\frac{(8 c d-b e+6 c e x) \left (a+b x+c x^2\right )^{3/2}}{12 c}-\frac{\left (\left (b^2-4 a c\right )^2 e\right ) \operatorname{Subst}\left (\int \frac{1}{4 c-x^2} \, dx,x,\frac{b+2 c x}{\sqrt{a+b x+c x^2}}\right )}{32 c^2}\\ &=\frac{\left (b^2-4 a c\right ) e (b+2 c x) \sqrt{a+b x+c x^2}}{32 c^2}+\frac{(8 c d-b e+6 c e x) \left (a+b x+c x^2\right )^{3/2}}{12 c}-\frac{\left (b^2-4 a c\right )^2 e \tanh ^{-1}\left (\frac{b+2 c x}{2 \sqrt{c} \sqrt{a+b x+c x^2}}\right )}{64 c^{5/2}}\\ \end{align*}

Mathematica [A]  time = 0.150707, size = 134, normalized size = 1.1 \[ \frac{\sqrt{a+x (b+c x)} \left (4 a c (-5 b e+16 c d+6 c e x)-2 b^2 c e x+3 b^3 e+8 b c^2 x (8 d+5 e x)+16 c^3 x^2 (4 d+3 e x)\right )}{96 c^2}-\frac{e \left (b^2-4 a c\right )^2 \tanh ^{-1}\left (\frac{b+2 c x}{2 \sqrt{c} \sqrt{a+x (b+c x)}}\right )}{64 c^{5/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(b + 2*c*x)*(d + e*x)*Sqrt[a + b*x + c*x^2],x]

[Out]

(Sqrt[a + x*(b + c*x)]*(3*b^3*e - 2*b^2*c*e*x + 16*c^3*x^2*(4*d + 3*e*x) + 8*b*c^2*x*(8*d + 5*e*x) + 4*a*c*(16
*c*d - 5*b*e + 6*c*e*x)))/(96*c^2) - ((b^2 - 4*a*c)^2*e*ArcTanh[(b + 2*c*x)/(2*Sqrt[c]*Sqrt[a + x*(b + c*x)])]
)/(64*c^(5/2))

________________________________________________________________________________________

Maple [B]  time = 0.006, size = 235, normalized size = 1.9 \begin{align*}{\frac{ex}{2} \left ( c{x}^{2}+bx+a \right ) ^{{\frac{3}{2}}}}-{\frac{be}{12\,c} \left ( c{x}^{2}+bx+a \right ) ^{{\frac{3}{2}}}}+{\frac{{b}^{2}ex}{16\,c}\sqrt{c{x}^{2}+bx+a}}+{\frac{{b}^{3}e}{32\,{c}^{2}}\sqrt{c{x}^{2}+bx+a}}+{\frac{{b}^{2}ea}{8}\ln \left ({ \left ({\frac{b}{2}}+cx \right ){\frac{1}{\sqrt{c}}}}+\sqrt{c{x}^{2}+bx+a} \right ){c}^{-{\frac{3}{2}}}}-{\frac{e{b}^{4}}{64}\ln \left ({ \left ({\frac{b}{2}}+cx \right ){\frac{1}{\sqrt{c}}}}+\sqrt{c{x}^{2}+bx+a} \right ){c}^{-{\frac{5}{2}}}}-{\frac{aex}{4}\sqrt{c{x}^{2}+bx+a}}-{\frac{abe}{8\,c}\sqrt{c{x}^{2}+bx+a}}-{\frac{e{a}^{2}}{4}\ln \left ({ \left ({\frac{b}{2}}+cx \right ){\frac{1}{\sqrt{c}}}}+\sqrt{c{x}^{2}+bx+a} \right ){\frac{1}{\sqrt{c}}}}+{\frac{2\,d}{3} \left ( c{x}^{2}+bx+a \right ) ^{{\frac{3}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((2*c*x+b)*(e*x+d)*(c*x^2+b*x+a)^(1/2),x)

[Out]

1/2*e*x*(c*x^2+b*x+a)^(3/2)-1/12/c*e*b*(c*x^2+b*x+a)^(3/2)+1/16/c*e*b^2*(c*x^2+b*x+a)^(1/2)*x+1/32/c^2*e*b^3*(
c*x^2+b*x+a)^(1/2)+1/8/c^(3/2)*e*b^2*ln((1/2*b+c*x)/c^(1/2)+(c*x^2+b*x+a)^(1/2))*a-1/64/c^(5/2)*e*b^4*ln((1/2*
b+c*x)/c^(1/2)+(c*x^2+b*x+a)^(1/2))-1/4*e*a*(c*x^2+b*x+a)^(1/2)*x-1/8/c*e*a*(c*x^2+b*x+a)^(1/2)*b-1/4/c^(1/2)*
e*a^2*ln((1/2*b+c*x)/c^(1/2)+(c*x^2+b*x+a)^(1/2))+2/3*(c*x^2+b*x+a)^(3/2)*d

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*c*x+b)*(e*x+d)*(c*x^2+b*x+a)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.31944, size = 799, normalized size = 6.55 \begin{align*} \left [\frac{3 \,{\left (b^{4} - 8 \, a b^{2} c + 16 \, a^{2} c^{2}\right )} \sqrt{c} e \log \left (-8 \, c^{2} x^{2} - 8 \, b c x - b^{2} + 4 \, \sqrt{c x^{2} + b x + a}{\left (2 \, c x + b\right )} \sqrt{c} - 4 \, a c\right ) + 4 \,{\left (48 \, c^{4} e x^{3} + 64 \, a c^{3} d + 8 \,{\left (8 \, c^{4} d + 5 \, b c^{3} e\right )} x^{2} +{\left (3 \, b^{3} c - 20 \, a b c^{2}\right )} e + 2 \,{\left (32 \, b c^{3} d -{\left (b^{2} c^{2} - 12 \, a c^{3}\right )} e\right )} x\right )} \sqrt{c x^{2} + b x + a}}{384 \, c^{3}}, \frac{3 \,{\left (b^{4} - 8 \, a b^{2} c + 16 \, a^{2} c^{2}\right )} \sqrt{-c} e \arctan \left (\frac{\sqrt{c x^{2} + b x + a}{\left (2 \, c x + b\right )} \sqrt{-c}}{2 \,{\left (c^{2} x^{2} + b c x + a c\right )}}\right ) + 2 \,{\left (48 \, c^{4} e x^{3} + 64 \, a c^{3} d + 8 \,{\left (8 \, c^{4} d + 5 \, b c^{3} e\right )} x^{2} +{\left (3 \, b^{3} c - 20 \, a b c^{2}\right )} e + 2 \,{\left (32 \, b c^{3} d -{\left (b^{2} c^{2} - 12 \, a c^{3}\right )} e\right )} x\right )} \sqrt{c x^{2} + b x + a}}{192 \, c^{3}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*c*x+b)*(e*x+d)*(c*x^2+b*x+a)^(1/2),x, algorithm="fricas")

[Out]

[1/384*(3*(b^4 - 8*a*b^2*c + 16*a^2*c^2)*sqrt(c)*e*log(-8*c^2*x^2 - 8*b*c*x - b^2 + 4*sqrt(c*x^2 + b*x + a)*(2
*c*x + b)*sqrt(c) - 4*a*c) + 4*(48*c^4*e*x^3 + 64*a*c^3*d + 8*(8*c^4*d + 5*b*c^3*e)*x^2 + (3*b^3*c - 20*a*b*c^
2)*e + 2*(32*b*c^3*d - (b^2*c^2 - 12*a*c^3)*e)*x)*sqrt(c*x^2 + b*x + a))/c^3, 1/192*(3*(b^4 - 8*a*b^2*c + 16*a
^2*c^2)*sqrt(-c)*e*arctan(1/2*sqrt(c*x^2 + b*x + a)*(2*c*x + b)*sqrt(-c)/(c^2*x^2 + b*c*x + a*c)) + 2*(48*c^4*
e*x^3 + 64*a*c^3*d + 8*(8*c^4*d + 5*b*c^3*e)*x^2 + (3*b^3*c - 20*a*b*c^2)*e + 2*(32*b*c^3*d - (b^2*c^2 - 12*a*
c^3)*e)*x)*sqrt(c*x^2 + b*x + a))/c^3]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (b + 2 c x\right ) \left (d + e x\right ) \sqrt{a + b x + c x^{2}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*c*x+b)*(e*x+d)*(c*x**2+b*x+a)**(1/2),x)

[Out]

Integral((b + 2*c*x)*(d + e*x)*sqrt(a + b*x + c*x**2), x)

________________________________________________________________________________________

Giac [A]  time = 1.1841, size = 230, normalized size = 1.89 \begin{align*} \frac{1}{96} \, \sqrt{c x^{2} + b x + a}{\left (2 \,{\left (4 \,{\left (6 \, c x e + \frac{8 \, c^{4} d + 5 \, b c^{3} e}{c^{3}}\right )} x + \frac{32 \, b c^{3} d - b^{2} c^{2} e + 12 \, a c^{3} e}{c^{3}}\right )} x + \frac{64 \, a c^{3} d + 3 \, b^{3} c e - 20 \, a b c^{2} e}{c^{3}}\right )} + \frac{{\left (b^{4} e - 8 \, a b^{2} c e + 16 \, a^{2} c^{2} e\right )} \log \left ({\left | -2 \,{\left (\sqrt{c} x - \sqrt{c x^{2} + b x + a}\right )} \sqrt{c} - b \right |}\right )}{64 \, c^{\frac{5}{2}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*c*x+b)*(e*x+d)*(c*x^2+b*x+a)^(1/2),x, algorithm="giac")

[Out]

1/96*sqrt(c*x^2 + b*x + a)*(2*(4*(6*c*x*e + (8*c^4*d + 5*b*c^3*e)/c^3)*x + (32*b*c^3*d - b^2*c^2*e + 12*a*c^3*
e)/c^3)*x + (64*a*c^3*d + 3*b^3*c*e - 20*a*b*c^2*e)/c^3) + 1/64*(b^4*e - 8*a*b^2*c*e + 16*a^2*c^2*e)*log(abs(-
2*(sqrt(c)*x - sqrt(c*x^2 + b*x + a))*sqrt(c) - b))/c^(5/2)